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ABSTRACT Monitoring wildlife population trends often involves indices assumed to correlate in proportion
to abundance. We used aerial count data and harvest statistics for moose (Alces alces) populations in 16
hunting districts of Montana, USA, spanning 32 years (1983–2014) to assess population trends, drivers of
uncertainty about those trends, and the relationship between aerial counts and hunter catch-per-unit-effort
(CPUE). We found a great deal of statistical uncertainty surrounding population trends of moose measured
with aerial minimum-count data, despite time series averaging >15 annual counts/district. State-space
models of count-based trends suggested declining populations in 11 of 16 districts, yet 95% credible intervals
overlapped 0 in all cases. The precision of count-based trends improved with increases in the number of years
spanned by the time series (b¼�0.003, P< 0.001) and average number of moose counted per survey
(b¼�0.0006, P¼ 0.002). Calibration of CPUE with count data showed positive correlations in only 5 of 16
(31%) districts and a catchability exponent (b) significantly <1. This indicated a generally poor level of
agreement between these 2 indices, and evidence of “hyperstability,” wherein declines measured by aerial
counts were not reflected by proportionate declines in CPUE. Additionally, long-term trends measured with
CPUE were not correlated to those in aerial counts (P¼ 0.61). We encourage explicit attention to the
precision of trend estimates and local calibration of population indices to ensure both positive and
proportionate relationships to underlying patterns of abundance. � 2016 The Wildlife Society.

KEY WORDS Alces alces, catchability, catch-per-unit-effort, CPUE, hunter harvest statistics, moose, population
growth, state-space models.

Monitoring change in the abundance of wildlife populations
is a core activity of wildlife management. Agencies employ a
variety of techniques to monitor populations, including those
that estimate abundance directly, as well as those that
estimate trends in abundance indirectly using indices
assumed to change proportionately with true abundance
(Mason et al. 2006). Monitoring of local ungulate
populations by Montana Fish, Wildlife & Parks, USA,
biologists is conducted through a combination of annual
aerial-survey counts, aerial age–sex composition ratios, and
hunter harvest statistics from phone surveys. Comparability
of aerial counts among years is sought by limiting surveys to

specified areas and under specified conditions (e.g., spring
green-up counts of elk [Cervus canadensis]), and these counts
represent a minimum number of animals rather than
statistical estimates of population size.
Time series of minimum count data can still allow unbiased

estimates of population trend as long as both the survey effort
and the mean sightability (proportion of animals in the
population seen during a survey) remain constant over time
(Harris 1986, Eberhardt and Simmons 1992, Humbert et al.
2009, K�ery and Schaub 2012). Sightability of animals is a
complex product of 3 conditional probabilities: 1) the
probability of an animal being present within the survey area,
2) the probability of an animal being available to be seen (e.g.,
not completely hidden by vegetation) given that it is within
the survey area, and 3) the probability of a given observer
actually seeing the animal given that it is available to seen
(Peters et al. 2014). Several aerial-survey methodologies have
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been developed to directly model portions of these
imperfections in visibility for estimating abundance, but
the minimum count approach instead assumes that the
overall visibility varies about some constant mean. As such,
imperfect sightability induces observation error into mini-
mum count data, which in turn decreases statistical power to
detect trends in abundance.
Aerial surveys often represent the “gold standard” for

monitoring ungulate populations, but such methods are
costly; and, in some scenarios, hunter statistics may provide a
cost-effective means of monitoring population trends
(Ericsson and Wallin 1999, Bontaities et al. 2000, Ueno
et al. 2014). Boyce et al. (2012) simulated moose (Alces alces)
monitoring data and resulting harvest prescriptions under
different scenarios and showed that switching from aerial
survey-based monitoring to monitoring solely with harvest
statistics (e.g., hunter success and catch-per-unit-effort)
would achieve a >600-fold reduction in costs and 30%
decrease in yield, or hunter opportunity. Here, we pay
specific attention to the role of catch-per-unit-effort
(CPUE), a commonly collected harvest statistic, as a
monitoring tool for hunted species. Despite the common
management practice of interpreting CPUE and other
hunter statistics as indices of game population abundances or
trends, there are relatively few statistical evaluations of their
reliability (Hatter 2001, Choate et al. 2006, Ueno et al.
2014). The relationship between population abundance and
CPUE has received much more attention in the arena of
fisheries monitoring and research, where CPUE plays a
major role in global monitoring of fisheries (Harley et al.
2001, Hampton et al. 2005, Erisman et al. 2011).
Calibration between CPUE and abundance (N) is often

characterized with the function,

CPUEt ¼ aN b
t ð1Þ

where a is the standardized coefficient of catchability and b
is a shape parameter characterizing the shape of the
relationship (Harley et al. 2001). It is often inherently
assumed that the shape parameter, b, is equal to 1, which
parameterizes a positive and linear correlation between
CPUE and abundance; in other words, changes in CPUE are
assumed to be proportionate to those inN (Fig. 1). However,
allowing b to vary concedes the potential for nonlinear or
threshold relationships between CPUE and abundance,
which may be more common in reality. Situations where
b< 1 (i.e., “hyperstability”) can occur when harvest is
particularly efficient or concentrated in areas of great
abundance. This would result in CPUE estimates optimisti-
cally conveying stability in a population when it is in fact
declining (Fig. 1). Conversely, b> 1 (i.e., “hyperdepletion”)
might convey pessimistic trends if a portion of the population
is functionally unavailable for harvest.
For terrestrial species, there are some indications that

CPUEmay not be proportional to abundance across multiple
taxa. Hatter (2001) found evidence of hyperstability when
using CPUE tomonitor declining populations of both black-
tailed deer (Odocoileus hemionus columbianus; b¼ 0.58) and

moose (b¼ 0.46). Similarly, Ueno et al. (2014) found a less
than proportional relationship (i.e., b< 1) between an index
of moose seen-per-unit-effort (SPUE) and moose density.
Most other studies evaluating CPUE have tested only for
linear relationships, inherently assuming b¼ 1. For example,
Lancia et al. (1996) and Fryxell et al. (1988) found evidence
of linear relationships in white-tailed deer (Odocoileus
virginianus) and moose, respectively, whereas Choate
et al. (2006) found that CPUE was a poor predictor of
abundance in cougars (Puma concolor). Lastly, Bowyer et al.
(1999) found that CPUE actually increased with declines in
abundance in a low-density moose population (b< 0). The
shape of this relationship between CPUE and abundance for
any particular wildlife population would have strong
implications for managers interpreting population trends
with CPUE (or SPUE) alone.
We used aerial count data and harvest statistics for moose

populations in 16 hunting districts of Montana, USA, to
assess: 1) the count-based population trends of moose in
these districts, 2) drivers of uncertainty about those trends,
and 3) the shape and strength of both short- and long-term
relationships between CPUE and aerial counts. We used
state-space models to estimate population trends with
associated 95% confident intervals (K�ery and Schaub 2012)
and assessed the relative effects of population size and the
sample size of surveys upon the precision of these
estimates. We then used a 2-tiered approach to test for
both short- and long-term relationships between mini-
mum counts and CPUE. First, we tested if annual
estimates of CPUE were proportionally related to annual
count data by estimating the shape parameter, b, which
describes this relationship (Hatter 2001). Second, we
compared long-term mean trends measured using both
counts and CPUE to test whether trends measured with
one population index were generally corroborated by the
other.

Figure 1. Theoretical relationships between relative values of catch-
per-unit-effort (CPUE) and abundance as parameterized by different values
of the shape parameter b, adapted from Harley et al. (2001).
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STUDY AREA

We compiled moose monitoring data spanning the years of
1983–2014 for 16 moose hunting districts (HDs) in
Montana (Fig. 2), including the Purcell Mountains (HD
100), Cabinet Mountains (HD 105), Salish Mountains
(HDs 106 and 111), Whitefish Range (HD 110), Fleecer
Mountains (HDs 319 and 341), upper BigHole Valley (HDs
323, 326, and 327), Gravelly Range (HD 330), Ruby
and Snowcrest Ranges (HD 331), Blacktail Mountains
(HD 332), and Centennial Valley (HDs 333 and 334).
Hunting districts averaged 1,304 km2 in area (range¼
333–3,057 km2), and were historically delineated with intent
to include both winter and summer ranges for local moose
populations. Moose harvest occurred in all 16 HDs over
the study period and extended back to 1945 in some areas.
The number of licenses offered varied considerably during
the study period, averaging 13.5 licenses/HD-year, and
ranging from 1 to 45 licenses in a given HD-year (Table 1).
In general, the number of statewide licenses peaked in the
mid-1990s and has since declined by >50% (DeCesare et al.
2014).
Hunt districts 100–111 were within Montana Fish,

Wildlife & Parks administrative Region 1 in northwestern
Montana. These HDs fell within the northern Rocky
Mountain forest terrestrial ecoregion (Olson et al. 2001).
This area was mountainous with extensive mesic conifer
forest complexes including mixed stands of Engelmann
spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa),
western red cedar (Thuja plicata), and mountain hemlock
(Tsuga mertensiana), and lesser components of lodgepole
pine (Pinus contorta), Douglas-fir (Pseudotsuga menziesii),
and western larch (Larix occidentalis). In many areas,
extensive wildfires during the 1900s–1920s and timber
harvest during the 1950s–1980s affected large tracts that
currently exist in various stages of succession; winter moose
surveys typically show the greatest concentrations in these
regenerating forest land-cover types. Hunt districts 319–341
were in Montana Fish, Wildlife & Parks’s Region 3 in
southwestern Montana. Each of these HDs included a
combination of south-central Rocky Mountain forest and
Montana valley and foothill grassland ecoregions. The area

was characterized by forested mountain ranges separated by
broad open valleys with a combination of sagebrush
(Artemisia spp.) and grassland (including Festuca spp., Poa
spp., and Pseudoroegneria spicata) communities, along with
agriculture. Wet valley bottoms with extensive riparian
communities made up of willows (Salix spp.) and sedges
(Carex spp.) were common. Surrounding mountains were
characteristic of somewhat xeric types relative to Region 1,
dominated by lodgepole pine, with additional spruce–fir
stands at higher elevations and Douglas-fir, western larch,
and ponderosa pine (Pinus ponderosa) at lower elevations.
Winter moose surveys in these regions typically find greatest
abundances of moose in riparian willow complexes on valley
floors.

METHODS

Data Collection
Aerial survey counts.—We conducted winter aerial surveys

using either fixed- (HDs 319–341) or rotary-wing (HDs
100–111) aircraft, with the same platform always used within
a given HD. The timing of surveys also targeted different
periods according to HD, with most surveys in HDs 100–
111 occurring in early winter (Dec) and surveys in HDs 319–
341 occurring during mid- to late winter (Jan–Mar). We
conducted surveys in standardized portions of HDs (i.e.,
trend areas) to maintain comparable survey effort across
years. Boundaries of trend areas were comprised of both
natural and anthropogenic landmarks including highways,
streams, and ridgelines. Each trend area was historically
selected to maximize the number of moose seen, both for
generating minimum population counts and estimating sex
and age classification ratios. Trend areas were estimated to
represent an average of 70% of themoose winter range within
a given HD (range¼ 20–90%) and expected to be the
greatest-density winter ranges within each HD, as deter-
mined by initial scoping surveys and analyses of winter
habitat selection and food habits.
In Region 3 of southwestern Montana, the fixed-wing

surveys focused on riparian–willow complexes on valley
floors. In this region, the winter diet of moose has been
shown previously to be dominated (63–93%) by willow

Figure 2. Moose hunting districts (HD) in Montana, USA, highlighting the 16 districts (grayed) for which aerial count data and estimates of catch-per-unit-
effort were analyzed, 1983–2014.
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species (Knowlton 1960, Dorn 1970) as well as local use of
grasses and sedges within haystacks for forage (N. J.
DeCesare, unpublished data). Winter aerial surveys in
southwestern Montana involved a mixture of sinuous flight
paths along riparian corridors and gridded paths in large
willow patches with the goal of complete coverage within the
trend areas. In Region 1 of northwestern Montana, the
rotary-wing surveys primarily focused on regenerating forests
within 15–30-year-old logging units and burns, which have
been shown to be most selected by moose in this region
(Matchett 1985). Flights in this region included the
utilization of snow-tracks to locate moose and maximize
the number of animals counted and classified. All flights in
both regions were conducted from altitudes <150m, from
which both moose and their tracks could be most easily
observed. Georeferenced survey track logs were collected
with global positioning system units beginning in the early
1990s to document and maintain consistent coverage of
trend areas across survey years. Surveys were conducted only
when snow was present and funding and other logistics
allowed; thus, flights were not conducted every year in each
district. All detected moose were counted and classified; the
summed count of detected moose within a given survey was
treated as a minimum count, with no sightability corrections
applied.
Hunting statistics.—During the study period, moose

harvest statistics were estimated annually through efforts
to contact all license holders following the hunting season.
The moose hunting season began on 15 September and
ended in late November of each year. Phone calls to moose
hunters were then begun by a coordinated team of FWP staff
in December and conducted through March following the
hunting season. Montana FWP has long collected annual
big-game harvest statistics by selecting a stratified random
sample of hunters to ask predefined questions about harvest
and hunting effort; this technique produces affordable and
unbiased results (Lukacs et al. 2011). In the case of moose,
the relatively small number of license holders (range¼
362–769 annually permitted hunters during 1983–2014)

allowed for inclusion of all licensed hunters in the survey and
for repeated attempts (up to 7) to contact all moose hunters
statewide each year. If no contact was made with a given
license-holder during the calling period, they were treated as
nonrespondents. During and following the calling period,
lead interviewers and a survey coordinator monitored the
quality of data and corrected obvious mistakes. Following
completion of the surveys, additional quality control was
performed using structured query language within the
database. Annual response rates to the moose harvest survey
averaged >90%, and we assumed that the relatively small
proportion of nonrespondents were missing at random from
the sample (Lohr 2009).
We estimated harvest numbers and total hunter days

(including both successful and unsuccessful hunters) for each
HD from survey response data using estimators for simple
random sampling within a given license type and stratified
random sampling for districts with multiple license types
(Thompson 2002). We corrected estimated variances and
confidence intervals for large sampling fractions (i.e., high
response rates) using a finite population correction factor
(Thompson 2002). In cases when there was only one
response in a given stratum, we took the stratum contribution
to the total variance to be the average of all strata with a
responding sample size of >1 individual. This adjustment
results in a conservative estimate of the total variance
(Lumley 2004). For the purposes of these analyses, we
estimated CPUE as the total number of moose harvested
divided by the total number of hunter days, combining
harvest and hunter days across license types within districts
with multiple types.

Data Analysis
Estimating mean growth rates from aerial-survey minimum

counts.—Conventional models of population trends using
log-linear regression of counts against time have been shown
to consistently underestimate the variance of trend estimates
and produce overly narrow confidence limits for trend
estimates (Humbert et al. 2009). One explanation for this

Table 1. Descriptive statistics characterizing aerial minimum-count data for moose populations across 16 hunting districts (HDs) and intrinsic population
growth rates (r), standard deviations and 95% credible intervals estimated with Bayesian state-space models, Montana, USA, 1983–2014.

HD Time period �x no. of licenses Range Ncounts �x count Range r̂ SDr 95% CI of r̂

100 1985–2014 20 12–25 21 50 5–97 �0.050 0.070 �0.199 to 0.104
105 1985–2014 20 10–25 23 67 2–115 �0.040 0.060 �0.165 to 0.090
106 2001–2007 15 15–15 6 38 30–47 �0.047 0.117 �0.293 to 0.205
110 1994–2007 16 10–40 13 41 10–74 �0.014 0.116 �0.255 to 0.233
111 1986–2007 19 10–34 17 24 1–56 �0.035 0.105 �0.238 to 0.198
319 1994–2013 8 2–16 17 10 2–15 0.008 0.102 �0.205 to 0.226
323 1999–2014 23 11–45 13 67 25–112 0.038 0.101 �0.171 to 0.256
325 1983–2014 7 1–12 25 24 6–56 0.006 0.056 �0.099 to 0.140
326 1999–2014 14 2–22 11 31 3–54 �0.040 0.134 �0.308 to 0.241
327 1999–2014 16 3–25 12 23 6–59 �0.062 0.118 �0.311 to 0.190
330 1987–2013 9 5–10 14 18 4–47 �0.018 0.086 �0.192 to 0.174
331 1987–2013 14 3–20 13 55 20–135 �0.016 0.078 �0.180 to 0.153
332 1987–2013 7 2–13 15 33 5–92 0.058 0.072 �0.096 to 0.209
333 1987–2013 3 2–4 11 24 2–48 �0.025 0.109 �0.244 to 0.210
334 1985–2014 11 7–20 23 89 44–135 0.022 0.026 �0.031 to 0.079
341 2002–2012 5 2–11 9 11 3–20 �0.016 0.157 �0.325 to 0.318
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underestimation involves a failure of serially autocorrelated
time-series data to meet assumptions of independence for
linear regression analysis (Ryding et al. 2007). A second
explanation is that annual variation about the long-term
mean growth rate is assumed to be the result solely of
observation error, which discounts the potential for process
variance, or biological variation in year-to-year growth
rates when compared with the long-term average (Humbert
et al. 2009, Hostetler and Chandler 2015). We used
code developed by K�ery and Schaub (2012) to apply
Bayesian state-space models for estimating growth rates
and confidence intervals while accounting for both
process variance and observation error contained within
estimates of overall population trend. Following K�ery and
Schaub (2012), we treated the state-process model for annual
population growth rates, rt, as log(Ntþ1)¼ log(Nt)þ rt, with
rt � Normal �r; s2

r

� �
, where �r was the overall mean growth

rate and s2
r was the process variance. The observation-

process model for the annual data, yt, was then
yt � Normal log N t ;s

2
y

� �h i
, where s2

y was the observation
variance.
To better understand the variability in precision of

estimates across HDs, we then treated the standard
deviation of growth-rate posterior estimates as a response
variable for modeling which parameters were most
responsible for improved precision. We used multiple
linear regression to assess the effect of the number of
annual surveys, the total duration of years spanned by
surveys, the average count recorded during surveys, and the
administrative region within Montana. We included
administrative region to capture differences in both aerial
survey platform and vegetation types among districts; in
northwestern Montana (Region 1) surveys were conducted
via helicopter over primarily forested habitats, whereas in
southwestern Montana (Region 3) surveys were conducted
via fixed-wing aircraft over primarily willow–riparian
habitats.
Calibrating CPUE as an annual index of counts.—We used

harvest and aerial survey data collected during 1983–2014
across 16 HDs to assess the relationship between CPUE
during a given hunting season and aerial survey counts
conducted within the subsequent winters of the same
biological year, i. Monitoring of big-game populations with
CPUE hinges initially upon a positive relationship between
catch and effort. At the individual hunter level, increased
effort is assumed to translate to increased cumulative
probability of a “catch”; and at the population-level,
increased cumulative hunter days are assumed to translate
to increased total catch. To validate that this was the case in
our own data under conditions when the maximum total
catch was dictated by regulation, we conducted a preliminary
analysis using a linear mixed-model to fit total harvest as a
function of hunter days, with the intercept fixed at 0 and
random slopes for each HD (see Supporting Information,
S1). This did indeed reveal positive relationships between
hunter days and harvest within all 16 HDs, with an overall
conditional R2 of 0.92. These results affirmed that catch and

effort remained positively related across different levels of
harvest regulation.
Typically, the relationship between CPUE and abundance

is modeled by taking the natural log of both sides of Equation
(1), such that,

loge CPUEið Þ ¼ loge að Þ þ b loge Nið Þ� � ð2Þ
The intercept (exponentiated) and slope of this regression

then represent estimates of the catchability coefficient (a)
and shape parameter (b), respectively. This approach mirrors
that of “classical calibration,” where the direction of
causation is such that CPUE is a dependent variable (y)
to be calibrated to the independent variable (x), abundance
(Krutchkoff 1967, Smith 2009). However, the underlying
goal of calibration exercises is often to predict the
independent variable when data are solely available for an
index such as CPUE. For these reasons, “inverse calibration,”
where abundance would be on the left side of the equation
and CPUE the right, is sometimes a more recommended
approach (e.g., Centner et al. 1998), particularly because the
results obtained by switching the x and y variables around are
not symmetric using ordinary least-squares regression (OLS;
Smith 2009). This asymmetry presents a conundrum in that
one intuitively expects a single relationship between CPUE
and abundance, yet will obtain different results depending on
which variable is on which side of the OLS regression
equation.
Fisheries researchers have addressed the issue of asymmetry

between classical and inverse calibration approaches by
applying reduced major axis (RMA) regression to models
comparing CPUE and abundance (Erisman et al. 2011,
Ward et al. 2013). Rather than the OLS approach of
minimizing the vertical residuals between the fitted and
observed y-values, RMA regressionminimizes the product of
both the dependent (x) and independent (y) deviations from
the fitted line (Ward et al. 2013). This has 2 important
benefits over OLS regression for our calibration of CPUE,
particularly in our case of estimating using aerial minimum-
count data, rather than estimates of abundance: 1) it accounts
for the presence of measurement error in both the x- and y-
variables, which is appropriate for these data; and 2) perhaps
more importantly, it enforces a symmetric relationship
between the 2 indices such that the slope of lines regressing
each as the dependent variable will be reciprocal, as
predictions made from either approach will be equivalent
(Smith 2009). Although this approach may represent an
improvement over previous applications of OLS regression
to this question, RMA regressions have been shown to
overestimate slopes and underestimate the widths of
confidence intervals with uncorrelated variables and small
sample sizes (Ricker 1984, Smith 2009). Thus, it has been
recommended to limit interpretation of slopes estimated
from RMA to only those data sets with significant
correlations as determined by screening with the correlation
coefficient (r) and its parametric P-value (Ricker 1984,
Legendre 1998). To accommodate limited sample sizes of
survey-years within the data for each HD, we used a
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moderate criterion of P< 0.20 to screen correlation
coefficients for entry into subsequent RMA regression
analyses.
We used per-district RMA regressions to estimate a and b

distinctly for each HD, following Equation (2). We used
only those data for which estimates of both CPUE and aerial
counts were available, and standardized and log-transformed
both CPUE and count data within districts by first dividing
the raw values of each index by the maximum value within
the time-series of that HD alone. We exponentiated model
intercepts to calculate a, and then estimated a weighted-
average overall estimate of b across all districts following the
methods of Murtaugh (2007), which adjusted the relative
influence of individual b estimates according to their
respective precision. For this weighting process, we
approximated standard error estimates of bs by dividing
the average span between b and 95% confidence interval
limits by 1.96 (the critical z-value for estimating parametric
95% CIs).
Comparing long-term trends estimated from CPUE and

counts.—Biologists working with indices of abundance often
make harvest management recommendations based on
trends measured over multiple years rather than on a given
point estimate for a single year. In addition to calibrating

CPUE and annual counts as described above, we also
estimated long-term trends with paired data for each to
assess if these were in agreement. Similar to sequential
animal counts, time series of CPUE data include both
process variation and observation error. Thus, we applied the
same state-space modeling approaches as described above for
count data to estimate mean rates of change per HD using
raw CPUE data from eachHD.We then used reduced major
axis regression to compare paired mean population growth
rates estimated with count and CPUE data across all 16
districts. We conducted all analyses using R 3.1.1 (R Core
Team 2014), and conducted RMA regressions using the
lmodel2 package (Legendre 2013; where RMA is called
“standard major axis (SMA)” regression).

RESULTS

We estimated annual mean population growth-rates for 16
HDs using minimum counts from 243 annual aerial surveys,
averaging 15.2 surveys/HD (range¼ 6–25; Fig. 3). Point
estimates of mean annual growth-rates (r̂ ) were negative for
11 of the 16 HDs. However, 95% credible intervals
surrounding mean growth-rates overlapped 0 in all districts
(Table 1; Fig. 4). The best model (R2¼ 0.85) explaining the
differences in the magnitude of standard deviations among

Figure 3. Time series of moose aerial counts (points), state-space model predicted counts (lines), and their respective 95% credible intervals (grayed area) in 16
hunting districts of Montana, USA, during portions or all of 1983–2014.
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growth-rate estimates showed improved precision with
increases in the number of years spanned by the time series
(b¼�0.003, P< 0.001) and in the average number of moose
counted per survey (b¼�0.0006, P¼ 0.002). There was no
difference among administrative regions in terms of the
precision of surveys (b¼ 0.0004, P¼ 0.96).
We modeled the relationship between CPUE and aerial

survey counts using 240 district-years of data for which both
aerial survey and harvest statistic information were available.
Values of the correlation coefficient (r) were positive for 14 of
16 HDs, suggesting that annual changes in CPUE were
generally corroborated by changes in the same direction
within aerial count data for most but not all districts (Table 2;
Fig. 5). However, significance tests of r were moderately
significant (P< 0.05) for only 2 HDs out of 16, and met our
initial criteria for subsequent RMA regression analyses
(P< 0.2) for 6 of 16 HDs (Table 2). Of these 6 HDs,
credible intervals from RMA regression suggested a
proportional relationship (b¼ 1) for 2 HDs, hyperstability
in CPUE (0<b< 1) for 3 HDs, and a negative proportional
relationship (b¼�1) for 1 HD (Fig. 5). A weighted mean
estimate of b across these 6 HDs indicated significant
hyperstability (b¼ 0.39, 95% CI¼ 0.113–0.669), though
this was principally driven by strong evidence of hyper-
stability in relatively few HDs (Table 2; Fig. 5).
Lastly, to compare the long-term trends that would be

detected with both population indices, we also estimated
overall mean population growth-rates (r) for each HD using
paired data sets of counts and CPUE for the same timespans.
Regression analysis of these paired data revealed no
significant relationship, as evidenced by the correlation
coefficient (r¼�0.14), its test of significance (P¼ 0.61), and
the coefficient of determination (R2¼ 0.019; Fig. 6).

DISCUSSION

Our results reveal a great deal of statistical uncertainty
surrounding population trends of moose in Montana when
using aerial-based minimum-count data, despite time series

including an average of approximately 15 annual counts/
district. A recent review of the status of moose in Montana
indicated concerns among management biologists over
potential population declines since the 1990s (DeCesare
et al. 2014). Our point estimates of r might corroborate
concerns over widespread declines to some degree, but these
data were generally insufficient to conclude with great
confidence that populations have in fact declined. Because
these data were minimum count data rather than statistical
estimates of population size, estimates of trend also hinged
upon an assumption of a constant mean sightability over

Figure 4. Intrinsic population growth rate estimates (r̂ ), with 95% confidence intervals, and sample sizes of aerial counts (labels) for moose populations in 16
hunting districts of Montana, USA, during portions or all of 1983–2014.

Table 2. Reduced major-axis regression estimates of the catchability
coefficient (a) and shape parameter (b) describing the relationship between
annual moose aerial-survey counts and moose hunter catch-per-unit-effort
(CPUE) estimates across 16 hunting districts (HDs), as well as the
correlation coefficient (r) and its parametric test of significance (P),
Montana, USA, 1983–2014.

Correlation
coeff.

HD aa ba SE(b)a 95% CI (b)a r P

100 �0.205 0.634 0.132 0.425–0.944 0.52 0.01
105 �0.346 0.399 0.087 0.263–0.605 0.33 0.13
106 0.002 1.00
110 �1.472 �0.779 0.226 �1.34 to �0.453 �0.51 0.07
111 �0.345 0.336 0.082 0.211–0.534 0.49 0.05
319 �0.33 0.23
323 0.036 1.005 0.291 0.585–1.726 0.52 0.07
325 0.20 0.37
326 0.18 0.60
327 0.15 0.63
330 �0.137 0.770 0.205 0.466–1.271 0.56 0.04
331 0.28 0.40
332 0.25 0.44
333 0.32 0.34
334 0.20 0.37
341 0.24 0.54

a Point estimates and CIs of a and b estimated using reduced major axis
regression for data sets with insignificant (P> 0.20) correlation coeff.
may be biased and are excluded.
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time. Although there were no data to suggest a change in
sightability over the time period considered, it is conceivable
that aging forest stands combined with reduced timber
harvest (Spoelma et al. 2004), changes to riparian–willow
habitats (whether degradation or restoration), or changes in
rancher practices that alter the availability of alternative food
sources (such as winter hay stacks) over this same time period
may also be responsible for changes in counts by inducing
gradual changes in mean sightability during surveys.
Much of the uncertainty about population trends likely

stems from the inherent insufficiency of statistical power
when surveying small populations with low sightability. The
degree of sightability-induced error may be greater in small
or low-density populations, making minimum counts of such
populations particularly prone to large sampling variance

(MacKenzie et al. 2005). Supporting this, we found the
magnitude of aerial counts to be an important driver of
precision in growth estimates amongHDs, in addition to the
length of the time-series of the counts. In our comparison,
we evaluated drivers of the posterior estimates of standard
deviations about the population growth rates, which
included combined effects of both observation and process
error. Small numbers of animals counted (i.e., small
populations) and short time-spans over which they are
counted could presumably lead to increases in both
observation and process error surrounding mean growth
rates. These issues associated with error variance present a
major challenge to those wishing to acquire reasonable
precision when monitoring small populations (<100 animals
counted/survey) even with relatively long (>20 yr) time
series. We did not find evidence of regional differences in
the precision of aerial surveys sufficient to suggest an effect
of the habitat-based sightability differences among these
regions. This lack of regional differences in precision may
reflect confounding differences between habitats and
aircraft types used during surveys across the 2 regions
evaluated. It appears that using rotary aircraft in presumably
low-sightability areas of Montana achieves comparable
precision to the use of fixed-wing aircraft in greater
sightability regions. During 1989–1993, Montana Fish,
Wildlife & Parks used mark–resight methods to
estimate average sightability as 0.34 and 0.53 in portions
of HDs 111 and 105 (95% CIs of 0–0.77 and 0.39–0.67,
respectively [J. Brown, Montana Fish, Wildlife & Parks,
unpublished data]). Unfortunately, comparable studies of
moose visibility are not available over other portions of the
state or years of monitoring.
Our results, incorporating both process and observation

error, uphold cautions that biologists should expect better
estimates of trend in more abundant and visible populations
and poor estimates in smaller and poorly visible populations.
Harris (1986) recommended that multiple surveys per year be
conducted in cases when the variability of any single count
cannot be reduced enough to produce sufficiently precise
trends. Simulations by Humbert et al. (2009) also suggest
that the financial cost of increasing precision with multiple
surveys per year might be offset by conducting such groups of
surveys less frequently (e.g., every other year). Pilot data to
evaluate the within-year variation of moose surveys in
Montana would be valuable for future power analyses
designed to assess these alternative survey strategies.
Calibrating another commonly used index of abundance,

CPUE, to aerial counts revealed mixed results across HDs.
These results suggest the assumption that CPUE will
generally change proportionately with abundance is dubious.
An overall weighted-average estimate of the shape parameter
(b¼ 0.39) suggested hyperstability as the global average
relationship, though attention to individual estimates per
HD suggests some caution is needed when interpreting this
result. In 10 of 16 HDs no correlation between CPUE and
counts was found, and in one case a significant negative
correlation existed. Thus, only in 5 of 16 (31%) HDs did
CPUE correlate positively (using a very liberal cut-off of

Figure 5. Empirical relationships between moose hunter catch-per-unit-
effort (CPUE) and moose aerial counts estimated with reduced major axis
(RMA) regression for 6 hunting districts with at least marginal correlations
(P< 0.20), and a weighted average across all districts (bold line), Montana,
USA, 1983–2014. Note an additional 10 districts that showed no
relationship between CPUE and counts were withheld from this plot
because RMA regressions are not recommended for data sets without
significant correlation coefficients (Ricker 1984, Legendre 1998).

Figure 6. The relationship between long-term growth rates for moose
populations in 16 hunting districts estimated using both aerial count data
and hunter catch-per-unit-effort (CPUE) in Montana, USA, 1983–2014.
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P< 0.20) to aerial counts. Among those 5 HDs where a
positive relationship was found, it was accompanied by
evidence of hyperstability in 3 cases (60%). This hyper-
stability indicates areas where mean declines in abundance
would not be reflected by proportionate declines in CPUE
(Hatter 2001).
Although few studies have similarly assessed this relation-

ship through direct estimation of the catchability exponent
b, there is evidence to support both proportionate (Solberg
and Sæther 1999, Kindberg et al. 2009, Cumberland 2012)
and disproportionate relationships between trends measured
via indices such as CPUE and trends in abundance (Bowyer
et al. 1999, Hatter 2001, Ueno et al. 2014). Given the variety
of results found both among and within (Hatter 2001) these
studies, we interpret our results to generally uphold the
recognized importance of site-specific, local conditions when
interpreting index data such as CPUE (Lancia et al. 1996,
Bowyer et al. 1999, Hatter 2001, Choate et al. 2006).
There are notable nuances to trophy big-game hunting and

the regulation of such that might lead to additional
complexities in CPUE data when compared with their
traditional use in fisheries. First, as is the case with many big-
game hunts across North America, moose licenses in
Montana are limited spatially by regulation and allocated
to hunters through a lottery. Thus, CPUE data are measured
from a relatively small sample of hunters; in this Montana
data set there were an average of 13.5 moose licenses
allocated per HD-year. Additionally, the rarity of drawing a
tag (e.g., 1.4% success rate/hunter in drawing 2014 license)
combined with the idea of moose as a trophy species may
cause hunter behavior to be less utilitarian and thus less
efficient (Holsman and Petchenik 2006). Hunters in such
tightly limited entry scenarios may be less likely to harvest an
animal at the first opportunity, driving effort estimates
upward. This highly limited-entry scenario may explain the
questionable performance of CPUE as a population
monitoring tool in our system relative to other systems
with much larger quantities of permissible harvest (Ueno
et al. 2014). Lastly, although the majority of licenses are for
antlered moose, there are a subset of licenses issued for
antlerless or either-sex harvest; an average of 29% of the
animals harvested within these data were antlerless (adult
females and calves). Differences in hunter behavior when
hunting males versus females may also affect CPUE data,
with potential to bias trends if the proportion of antlered
versus antlerless harvest changes over time (Bhandari et al.
2006, Holsman and Petchenik 2006). Biologists monitoring
populations with CPUE data may wish to restrict uses of this
metric to within-sex comparisons, or consider working with
other metrics such as animal sightings per unit effort (Ueno
et al. 2014).
The rigor of our evaluation of CPUE as a source of

monitoring data is also hampered by the relative lack of
precision of aerial count data. Rather than assessing the
relationship between CPUE and abundance, we assessed the
relationship between one index of abundance (CPUE) and
another (min. aerial counts). We used reduced major axis
regression for explicitly accommodating potential for error in

both data sets, and thus enforcing a symmetric relationship
between each regardless of their treatment as dependent or
independent variables. A lack of correlation and proportion-
ality between CPUE and minimum aerial counts could be
driven by the relationship between true abundance and either
or both of these indices. However, a post hoc analysis assessing
whether poor correlations between count and CPUE data
were driven by the lack of precision in the count data
themselves, showed no interactive effect (P¼ 0.89) of the
relative precision of count data upon the resulting relation-
ship between counts and CPUE (see Supporting Informa-
tion, S2). Thus, we expect these results are not solely a
reflection of the limitations in the count data.
Theoretical models for both moose (Boyce et al. 2012) and

African lions (Panthera leo; Edwards et al. 2014) have shown
that cost-effective and sustainable harvest management is
achievable with collection of CPUE data alone. However,
our test of this approach with empirical data suggests a note
of caution. For small, harvested populations with limited
data strings, multiple lines of evidence about population
dynamics would also help make inferences supporting
harvest management recommendations. Managers may
also consider joint modeling of monitoring data using
integrated population models, which can formally incorpo-
rate multiple types of data, such as vital rate monitoring,
aerial counts, and harvest statistics (Schaub et al. 2007,
Johnson et al. 2010). Incorporation of monitoring data into
integrated population models would also permit an assess-
ment of the relative value of data sources with respect to the
precision of estimates needed to make management
recommendations and allow a cost–benefit analysis compar-
ing monitoring tactics (Lahoz-Monfort et al. 2014). This
would allow not only for a statistically robust method but also
one that may be affordable.
In general, we encourage managers to pay explicit attention

to the precision of trend estimates when monitoring small or
poorly visible populations with count data. It may be that
repeated surveys within years (potentially at the allowable
expense of conducting surveys every year; Humbert et al.
2009) are needed to provide sufficiently precise estimates of
trend. Furthermore, we encourage local assessment of
correlations between population indices and actual abun-
dance. Our results showed a great degree of spatial variation
in the sign, significance, and shape of correlations between
CPUE and population counts, and a general lack of
agreement in trends as measured by each. These results
highlight a need for caution when monitoring populations
with uncalibrated indices, which may not always be positively
and linearly correlated to abundance as assumed.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article at the publisher’s web-site. We
include additional analyses upholding the positive relation-
ship between catch and effort underlying these data (S1) and
testing whether there was any indication that the precision of
trends measured from aerial counts was related to the
subsequent correlation of those counts to CPUE (S2).
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